Carbon Nano-Structured Neural Probes Show Promise for Magnetic Resonance Imaging Applications.

نویسندگان

  • Corey E Cruttenden
  • Jennifer M Taylor
  • Shan Hu
  • Yi Zhang
  • Xiao-Hong Zhu
  • Wei Chen
  • Rajesh Rajamani
چکیده

Objective Previous animal studies have demonstrated that carbon nanotube (CNT) electrodes provide several advantages of preferential cell growth and better signal-to-noise ratio when interfacing with brain neural tissue. This work explores another advantage of CNT electrodes, namely their MRI compatibility. MRI-compatible neural electrodes that do not produce image artifacts will allow simultaneous co-located functional MRI and neural signal recordings, which will help improve our understanding of the brain. Approach Prototype CNT electrodes on polyimide substrates are fabricated and tested in vitro and in vivo in rat brain at 9.4T. To understand the results of the in vitro and in vivo studies, a simulation model based on numerical computation of the magnetic field around a two-dimensional object in a tissue substrate is developed. Main Results The prototype electrodes are found to introduce negligible image artifacts in structural and functional imaging sequences in vitro and in vivo. Simulation results confirm that CNT prototype electrodes produce less magnetic field distortion than traditional metallic electrodes due to a combination of both superior material properties and geometry. By using CNT films, image artifacts can be nearly eliminated at magnetic fields of strength up to 9.4T. At the same time, the high surface area of a CNT film provides high charge transfer and enables neural local field potential (LFP) recordings with an equal or better signal-to-noise ratio (SNR) than traditional electrodes. Significance CNT film electrodes can be used for simultaneous MRI and electrophysiology in animal models to investigate fundamental neuroscience questions and clinically relevant topics such as epilepsy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gadofullerenes and Gadonanotubes: A New Paradigm for High-Performance Magnetic Resonance Imaging Contrast Agent Probes

In this review, the physicochemical properties and biomedical applications of Gd@C60 (gadofullerenes) and Gd@Ultra-short Single-walled carbon nanotubes (gadonanotubes) are discussed, especially in regard to the unique benefits of this novel class of materials for Magnetic Resonance Imaging (MRI). The introduction of carbon nanotechnology into biomaterial science has created great opportunity fo...

متن کامل

Investigation of nuclear magnetic resonance (NMR) and Binding Energies Clonidine Drug-Carbon Nano Tube: A Theoretical Study

In this work, we have studied binding of Clonidine drug (C9H9Cl2N3) with zigzag single walled carbonnanotubes (SWCNT) (5, 0) by theoretical methods of theory using Gaussian 09 software package.Binding energies, NMR parameters and HOMO- LUMO Gap energy were calculated. Results frombinding energies indicate that it is possible thermodynamically to bind Clonidine drug to SWCNT.The calculated NMR p...

متن کامل

Bimodal magnetic resonance imaging-computed tomography nanoprobes: A Review

Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...

متن کامل

Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications

Magnetic resonance imaging (MRI) is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical pr...

متن کامل

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

Nano-theranostics offer remarkable potential for future biomedical technology with simultaneous applications for diagnosis and therapy of disease sites. Through smart and careful chemical modifications of the nanoparticle surface, these can be converted to multifunctional tiny objects which in turn can be used as vehicle for delivering multimodal imaging agents and therapeutic material to speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical physics & engineering express

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2017